Lecon 80

Etude des équations différentielles linéaires du second ordre à coefficients constants. Exemples.

Pré-requis : - Continuité, dérivabilité

- Résolution des équations différentielles du premier ordre.

Dans toute la leçon, on se place dans un corps $K = \mathbb{R}$ ou \mathbb{C} . I désigne un intervalle ouvert de \mathbb{R} non vide et non réduit à un point ; a, b, $c \in K$ ($a \neq 0$) et f une fonction continue de I dans K.

De nombreux exemples en mathématiques appliquées tels que dans la physique conduisent à la résolution d'équations différentielles. On s'intéressera dans cette leçon à l'étude et à la résolution d'équations différentielles linéaires d'ordre 2 à coefficients constants.

1 – Généralités

Définition : On appelle équation différentielle linéaire du second ordre à coefficients constants toute équation différentielle de la forme a y'' + b y' + c y = f(t) (E).

La fonction f est appelée le **second membre** de (E) ; et on appelle **solution** de (E) sur I, toute fonction $\phi: I \longrightarrow K$ de classe \mathscr{C}^2 telle que :

$$\forall t \in I$$
, $a \varphi''(t) + b \varphi'(t) + c \varphi(t) = f(t)$.

Remarque : $t \in I$ est une variable indépendante.

Définition : L'équation a y'' + b y' + c y = 0 (E₀) est appelé **équation homogène** (ou **sans second membre**) associée à (E).

On note S(K) (resp. $S_0(K)$) l'ensemble des solutions de (E) (resp. (E_0)) sur I à valeurs dans K.

Exemples: 1)
$$y'' - 5y' + 6y = 0$$

2) $y'' - 4y' + 4y = 0$
3) $y'' + \omega^2 y = 0$; avec $\omega \in \mathbb{R}_+^*$.

3) y + ω y = 0, avec $\omega \in \mathbb{R}_+$

Dans la suite de la leçon (E) désigne l'équation différentielle a y'' + b y' + c y = f(t) et (E₀) son équation homogène associée.

Remarque : ♣ La courbe représentative d'une solution y sur I est une courbe intégrale sur I.

♣ $\psi(y) = a y'' + b y' + c y$ application de $\mathscr{C}^2(I)$ dans $\mathscr{C}^0(I)$. (E) s'écrit $\psi(y) = f(t)$ et cette équation est dite **linéaire** car ψ est linéaire.

Cette propriété explique certains résultats qu'on interprétera en algèbre linéaire.

♣ En pratique, on ne cherche pas toutes les solutions d'une équation différentielle mais seulement celle(s) qui vérifie(nt) certaines conditions. Par exemple, rechercher les solutions y de (E) vérifiant les deux conditions initiales $y(t_0) = y_0$ et $y'(t_0) = y_0'$ (problème de Cauchy). On retrouve ce problème en mécanique, à l'instant t_0 , y_0 : position et y_0' : vitesse.

Proposition 1 : Structure des solutions de (E_0)

L'ensemble S₀(K) est un K-espace vectoriel.

Preuve: C'est-à-dire que $S_0(K)$ est stable par combinaisons linéaires: $\forall \lambda \in K$, $\forall y, z \in S_0(K)$, $\lambda y + z \in S_0(K)$; ou encore que c'est le noyau de l'application $\varphi: y \longmapsto ay'' + by' + cy$.

* $S_0(K)$ est non vide car $f \equiv 0 \in S_0(K)$.

Soit $y, z \in S_0(K)$ i.e solutions de (E_0) sur I et $\lambda \in \mathbb{R}$. On a alors que $\lambda y + z$ est de classe \mathscr{C}^2 sur I.

On a aussi: $\forall t \in \mathbb{R}$, ay''(t) + by'(t) + cy(t) = 0 et az''(t) + bz'(t) + cz(t) = 0.

 $D'où, \ \forall t \in I\!\!R, \quad a(\lambda y(t) + z(t))'' + b(\lambda y(t) + z(t))' + c(\lambda y(t) + z(t)) = \lambda \left(a \ y''(t) + b \ y'(t) + y(t)\right) + \left(a \ z''(t) + b \ z'(t) + c \ z(t)\right) = 0 \quad donc \\ \lambda y + z \in S_0(K). \quad \blacksquare$

2 – Résolution de l'équation homogène

Définition : L'équation $ar^2 + br + c = 0$ est appelée **équation caractéristique** associée à (E), notée (E_c). On note $\Delta = b^2 - 4ac$ son discriminant.

Remarque: \bigstar (E_c) admet toujours deux racines complexes, distinctes ou non, r et r'. $az^2 + bz + c = a(z - r)(z - r')$; r + r' = -b/a et rr' = c/a.

Proposition 2: Soit $r \in K$, la fonction $f_r: \begin{cases} I \longrightarrow K \\ t \longmapsto e^{rt} \end{cases}$ est solution de (E_0) si, et seulement si, $ar^2 + br + c = 0$.

Preuve: \Rightarrow Si $t \longmapsto e^{rt}$ solution de (E_0) , $ar^2 e^{rt} + br e^{rt} + c e^{rt} = 0$, comme $e^{rt} \neq 0$, $ar^2 + br + c = 0$. \Leftarrow Si $ar^2 + br + c = 0$, $(e^{rt} \neq 0)$ donc $ar^2 e^{rt} + br e^{rt} + c e^{rt} = 0$, i.e e^{rt} solution de (E_0) .

a) Solutions complexes de (E_0) pour $(a,b,c) \in K^* \times K^2$

Théorème 1 : Les solutions complexes de (E₀) sont :

1) Si $\Delta \neq 0$, (E_c) a deux racines complexes r et r' (distinctes) :

$$S_0(\mathbb{C}) = \{ t \in I \longrightarrow C e^{rt} + C' e^{r't} \mid (C, C') \in \mathbb{C}^2 \}.$$

2) Si $\Delta = 0$, (E_c) a une racine double complexe r :

$$S_0(\mathbb{C}) = \{ t \in \overline{I} \longmapsto (Ct + C') e^{rt} \mid (C, C') \in \mathbb{C}^2 \}.$$

Preuve: Dans \mathbb{C} , l'équation (E_c) admet deux solutions complexes r et r' (distinctes ou non); donc d'après la proposition précédente $t \longmapsto e^{rt}$ est solution de (E_0) .

Pour avoir toutes les solutions y de (E_0) , on change de fonction inconnue en posant : $y(t) = e^{rt} u(t) \iff u(t) = e^{-rt} y(t)$.

On obtient par dérivation : $y'(t) = e^{rt} (u'(t) + r u(t))$ et $y''(t) = e^{rt} (u''(t) + 2r u'(t) + r^2 u(t))$.

En reportant et en simplifiant par e^{rt} qui ne s'annule pas sur IR, on constate que y est solution de (E_0) ssi u solution de $a u''(t) + (2ar + b) u'(t) + (ar^2 + br + c) u(t) = 0$.

Comme $ar^2 + br + c = 0$ et $r + r' = -\frac{b}{a} \Leftrightarrow 2ar + b = a (r - r')$, on obtient $a u''(t) + a (r - r') u'(t) = 0 \Leftrightarrow u''(t) + (r - r') u'(t) = 0$.

1) Si $\Delta \neq 0$, les racines r et r' sont distinctes et la résolution de u'' + (r - r')u' = 0 équation linéaire du premier ordre en u', donne u': $u'(t) = \lambda \exp((r - r')t)$ avec $\lambda \in \mathbb{C}$, puis u: $u(t) = \frac{-\lambda}{r - r'} \exp((r - r')t) + C$; avec $(\lambda, C) \in \mathbb{C}^2$. En posant $C' = \frac{-\lambda}{r - r'} \in \mathbb{C}$, on obtient $u(t) = C' \exp((r - r')t) + C$. Finalement $\exists C, C' \in \mathbb{C}$, $u(t) = C' \exp((r' - r)t) + C$ et $v(t) = C e^{rt} + C' e^{r't}$.

2) Si $\Delta = 0$, les racines r et r' sont égales et l'équation devient u''(t) = 0, $d'où \exists C, C' \in \mathbb{C}$, u(t) = Ct + C' et $y(t) = (Ct + C') e^{rt}$.

Remarque: ♣ En langage algébrique, on dit que l'ensemble des solutions forme un plan vectoriel de dimension 2 (car celles-ci sont combinaisons linéaires de deux fonctions non proportionnelles).

♣ Les solutions à valeurs réelles de (E_0) sont des solutions à valeurs complexes caractérisées par le fait qu'elles sont égales à leurs conjugués (car $S_0(\mathbb{R}) \subset S_0(\mathbb{C})$).

b) Solutions réelles de (E_0) pour $(a,b,c) \in \mathbb{R}^* \times \mathbb{R}^2$

Théorème 2 : Les solutions réelles de (E₀) sont :

1) Si $\Delta > 0$, (E_c) a deux racines réelles distinctes r et r':

$$S_0({\rm I\!R}) = \{ \ t \in I \longmapsto C \ e^{rt} + C' \ e^{r't} \ | \ (C,C') \in {\rm I\!R}^2 \ \}.$$

2) Si $\Delta = 0$, (E_c) a une racine double réelle r :

$$S_0(\mathbb{R}) = \{ t \in \mathbb{I} \longmapsto (Ct + C') e^{rt} \mid (C, C') \in \mathbb{R}^2 \}.$$

3) Si $\Delta < 0$, (E_c) a deux racines complexes conjuguées $\lambda + i\omega$ et $\lambda - i\omega$:

$$S_0(\mathbb{R}) = \{ t \in I \longmapsto e^{\lambda t} (C \cos(\omega t) + C' \sin(\omega t)) \mid (C, C') \in \mathbb{R}^2 \}.$$

Preuve : 1) Si $\Delta > 0$, (E_c) a deux racines réelles distinctes r et r', supposons r < r'.

Les solutions complexes sont: $\forall t \in I$, $y(t) = C e^{rt} + C' e^{r't}$, C, $C' \in \mathbb{C}$. Les solutions sont à valeurs réelles (ou égales à leurs conjuguées) ssi: $\forall t \in I$, $C e^{rt} + C' e^{r't} = \overline{C} e^{rt} + \overline{C'} e^{r't}$ \Rightarrow $(C - \overline{C}) e^{rt} = (\overline{C'} - C') e^{r't}$ \Rightarrow $(C - \overline{C}) = (\overline{C'} - C') e^{(r' - r)t}$; comme l'égalité est vraie pour tout $t \in I$, on a $C = \overline{C}$ et $C' = \overline{C'}$.

Inversement, si $C = \overline{C}$ et $C' = \overline{C'}$, l'égalité précédente est vérifiée.

Les solutions réelles sont donc définies par : $(C, C') \in \mathbb{R}^2$, $y(t) = C e^{rt} + C' e^{r't}$.

2) On traitera de manière similaire le cas $\Delta = 0$.

3) Si $\Delta < 0$, (E_c) a deux racines complexes conjugués $\lambda \pm i \omega$, avec $(\lambda, \omega) \in \mathbb{R}^2$.

Les solutions complexes sont de la forme suivante : $(C, C') \in \mathbb{R}^2$, $y(t) = C \exp((\lambda + i \omega)t) + C' \exp((\lambda - i \omega)t)$.

Ces solutions sont réelles ssi $e^{\lambda t} \left(C \exp(i\omega t) + C' \exp(-i\omega t) \right) = e^{\lambda t} \left(\overline{C'} \exp(i\omega t) + \overline{C} \exp(-i\omega t) \right)$

Ce qui implique $(C - \overline{C'}) \exp(2i\omega t) + (C' - \overline{C}) = 0$. On a $C' = \overline{C}$ en additionnant les égalités obtenues en faisant t = 0 et $t = \frac{\pi}{2\omega}$

Inversement, si $C' = \overline{C}$, l'égalité précédente est vérifiée.

Comme $C' = \overline{C}$, il existe donc deux réels α , β tels que $C = \alpha + i \beta$ et $C' = \alpha - i \beta$. Les solutions réelles sont donc définies par l'expression suivante où $(\alpha, \beta) \in \mathbb{R}^2$:

 $y(t) = e^{rt} \left((\alpha + i \beta) \exp(i \omega t) + (\alpha - i \beta) \exp(-i \omega t) \right) \implies y(t) = e^{rt} \left(2\alpha \cos(\omega t) - 2\beta \sin(\omega t) \right). \blacksquare$

Remarque: En langage algébrique, on dit que l'ensemble des solutions forme un plan vectoriel de dimension 2 (car celles-ci sont combinaisons linéaires de deux fonctions non proportionnelles).

Exemples: 1) y'' - 5y' + 6y = 0. L'équation caractéristique (E_c) $r^2 - 5r + 6 = 0$ admet deux solutions distinctes 2 et 3. Donc $S_0(K) = \{t \in I \longrightarrow \lambda e^{2t} + \mu e^{3t} \mid (\lambda, \mu) \in K^2 \}.$

 $2) \; y'' - 4y' + 4y = 0. \; (E_c) \; admet \; une \; solution \; double \; 2 \; ; \\ d'où \; S_0(K) = \{t \in I \longmapsto (\lambda t + \mu) \; e^{2t} \; | \; (\lambda,\mu) \in \; K^2\}.$

3) $y'' + \omega^2 y = 0$; avec $\omega \in \mathbb{R}^*$. $(E_c) r^2 + \omega^2 = 0 \iff r^2 = -\omega^2 \iff r = \pm i\omega$ donc deux racines complexes conjuguées. D'où $S_0(\mathbb{R}) = \{t \in I \longrightarrow \lambda \cos(\omega t) + \mu \sin(\omega t) \mid (\lambda, \mu) \in K^2\}.$

Exercice: Déterminer les solutions réelles et complexes des équations différentielles suivantes:

1)
$$y'' + y' + y = 0$$

2)
$$y'' - i y' = 0$$
.

Les solutions complexes de l'équation homogène : y'' + y' + y = 0 sont donc les fonctions :

Les solutions réelles, i.e celles qui sont égales à leurs conjugués sont :

$$y(t) = \exp\left(-\frac{t}{2}\right) \left(C\cos\left(\frac{\sqrt{3}}{2}t\right) + C'\sin\left(\frac{\sqrt{3}}{2}t\right)\right) \text{ avec } (C, C') \in \mathbb{R}^2 \ (\Delta < 0 \text{ dans } \mathbb{R}).$$

Dans les deux cas, on voit que les solutions tendent vers 0 quand t $\longrightarrow +\infty$ puisqu'on a : $|y(t)| \le (|C| + |C'|) \exp\left(-\frac{t}{2}\right)$.

 $2) \ (E_c): r^2-i \ r=0 \ \Leftrightarrow \ r(r-i)=0. \ Donc \ r=0 \ ou \ r=i. \ On \ en \ d\'eduit \ S_0(\mathbb{C})=\{t\in I \longmapsto \lambda_1+\lambda_2 e^{ix} \ | \ (\lambda_1,\lambda_2)\in \mathbb{C}^2\}.$

Cherchons les solutions réelles : soit λ_1 , λ_2 fixés tels que $\forall x \in I$, $y_0(x)$ soit réel.

 $On \ a: y_0(x) = \lambda_1 + \lambda_2 \left(\cos x + i \sin x\right); \ d'où \ Im(y_0(x)) = Im(\lambda_1) + Im(\lambda_2) \cos x + Re(\lambda_2) \sin x. \ Donc \ \lambda_1 \in \ I\!\!R \ \ et \ \lambda_2 = 0.$ Finalement $S_0(\mathbb{R}) = \{t \in I \longrightarrow \lambda_1 \mid \lambda_1 \in \mathbb{R}\}. \blacklozenge$

3 – Résolution de (E)

a) Solution générale de (E)

Définition : On appelle solution particulière de (E), une solution de (E).

Proposition 3 : Structure des solutions de (E)

L'ensemble S(K) des solutions de (E) sur I est l'ensemble de la somme d'une solution particulière y_p sur I de (E) et d'une solution y_0 sur I de (E_0) .

Preuve : Puisque y_p est une solution particulière de (E) sur I, $\forall t \in I$, $ay_p''(t) + by_p'(t) + cy_p(t) = f(t)$ (1).

* Désignons par $y_0 \in S_0(K)$, i.e solution de (E_0) , $\forall t \in I$, $ay_0''(t) + by_0'(t) + cy_0(t) = 0$ (2).

Par addition de (1) et (2), $\forall t \in I$, a $(y_p''(t) + y_0''(t)) + b (y_p'(t) + y_0'(t)) + c (y_p(t) + y_0(t)) = f(t)$. Donc $y = y_p + y_0$ solution de $(E) \implies y_p + S_0(K) \subset S(K)$.

* Désignons par $y \in S(K)$, i.e solution de (E) sur I, $\forall t \in I$, ay''(t) + by'(t) + cy(t) = f(t) (3).

Par soustraction de (3) par (1), $a(y''(t) - y_p''(t)) + b(y'(t) - y_p'(t)) + c(y(t) - y_p(t)) = 0$.

Donc $y_0 = y - y_p$ est solution de (E_0) et $y = y_p + y_0 \in y_p + S_0(K)$. Donc $S(K) \subset S_0(K) + y_p$ i.e $S(K) = y_p + S_0(K)$.

Remarque : En langage algébrique, on dit que l'ensemble $S = y_p + S_0$ des solutions de (E) forme un espace affine contenant y_p et de direction S_0 .

Proposition 4 : Principe de superposition des solutions

Soit $g: I \longrightarrow K$ une fonction continue et $(E_g): a y'' + b y' + c y = g(t)$.

Si y et y_g sont solutions sur I de (E) et (E_g), alors pour $(\lambda, \mu) \in K^2$, $\lambda y + \mu y_g$ est solution sur I de $a y'' + b y' + c y = \lambda f(t) + \mu g(t).$

Preuve: On a par hypothèse, $\forall t \in I$, a y''(t) + b y'(t) + c y(t) = f(t) et $\forall t \in I$, a $y_g''(t) + b y_g'(t) + c y_g(t) = g(t)$. Multiplions par λ et μ , sommons et utilisons la linéarité de la dérivation :

$$a(\lambda y''(t) + \mu y_g''(t)) + b(\lambda y'(t) + \mu y_g'(t)) + c(\lambda y(t) + \mu y_g(t)) = \lambda f(t) + \mu g(t).$$

Donc $\lambda y + \mu y_g$ est solution de l'équation différentielle indiquée.

Remarque: On peut généraliser, i.e si $f = \sum_{k=1}^{n} f_k$ et si pour tout $k \in \{1,...,n\}$ on dispose d'une solution particulier y_k de l'équation $ay'' + by' + cy = f_k$, alors $\sum_{k=1}^{n} y_k$ est solution particulière de (E).

b) Problème de Cauchy

Théorème 3: Théorème de Cauchy-Lipchitz

Soit $(t_0, y_0, y_0') \in I \times K^2$. Il existe une unique solution φ de (E) sur I vérifiant $\varphi(t_0) = y_0$ et $\varphi'(t_0) = y_0'$.

Preuve: On obtient cette solution en faisant le changement de fonction inconnue $y(t) = e^{rt} u(t)$ où r racine de (E_c) et en déterminant u et y à l'aide des conditions initiales.

On pose $y(t) = e^{rt} u(t) \implies u(t) = e^{-rt} y(t)$. On obtient par dérivation : $y'(t) = e^{rt} (u'(t) + r u(t))$ et $y''(t) = e^{rt} (u''(t) + 2r u'(t) + r^2 u(t))$. En reportant et en tenant compte de $ar^2 + br + c = 0$, puis en simplifiant par e^{rt} on constate que y est solution de (E) ssi u est solution de (E'): $au''(t) + (2ar + b)u'(t) = e^{-rt} f(t)$; u' solution d'une équation différentielle linéaire du 1^{er} ordre : $u(t) = e^{rt} y(t)$, $u'(t) = e^{-rt}(y'(t) - ry(t))$, il est équivalent de chercher : * une solution y de (E) telle que $y(t_0) = y_0$, $y'(t_0) = y_0'$ * une solution u de (E') telle que $u(t_0) = e^{-rt_0} y_0$, $u'(t_0) = e^{-rt_0} (y_0' - r y_0)$.

Comme il existe une seule solution u' de (E') telle que $u'(t_0) = e^{-rt} (y_0' - r y_0)$, comme l'intégration de u' compte tenu de la condition d'intégration $u(t_0) = e^{-rt_0}$, v_0 donne aussi une unique solution sur I, le résultat est prouvé.

Remarque : La seule solution telle que $y(t_0) = y'(t_0) = 0$ est la solution nulle.

<u>Exercice</u>: Déterminer les solutions réelles de y'' + 4y' + 4y = 18 ch t (*), avec y(0) = 0 et y'(0) = 1.

Solution: (E_c) : $r^2 + 4r + 4 = 0$. On a $\Delta = 16 - 16 = 0$, donc $r = -\frac{4}{2} = -2$ racine double.

Donc $y(t) = (Ct + C') e^{-2t}, C, C' \in \mathbb{R}.$

Avec la méthode précédente, on pose $y(t) = e^{-2t} u(t)$.

 $y'(t) = e^{-2t} (u'(t) - 2u(t))$ et $y''(t) = e^{-2t} (u''(t) - 4u'(t) + 4u(t))$. En reportant dans (*), on a u''(t) = 18 ch t $e^{2t} = 9(e^{3t} + e^t)$.

 $Par \ intégration, \ on \ en \ déduit \ u'(t) = 9\left(\frac{e^{3t}}{3} + e^t\right) + a = 3e^{3t} + 9e^t + a, \ avec \ a \in \ I\!R \ donc \ u(t) = e^{3t} + 9e^t + at + b, \ avec \ (a,b) \in \ I\!R^2.$

D'où $y(t) = e^{-2t} u(t) = e^{t} + 9e^{-t} + (at + b)e^{-2t}$, avec $a, b \in \mathbb{R}$. Comme y(0) = 0 et y'(0) = 1. On trouve y(0) = 1 + 9 + b $\Leftrightarrow b = -10$. $y'(t) = e^{t} - 9e^{-t} + a e^{-2t} - 2(at + b)e^{-2t}$ donc y'(0) = -8 + a - 2b $\Leftrightarrow a = -12$.

Remarque : Si a, b, c, $y_0, y_0' \in \mathbb{R}$, et si f est à valeurs réelles, on peut vérifier que la solution φ du problème de Cauchy est à valeurs réelles. La méthode proposée conduit à une solution à priori complexe, mais on voit par conjugaison y solution du même problème de Cauchy. Par unicité, cette solution est donc égale à son conjugué, ce qui établit qu'elle est réelle.

c) Cas où le second membre est particulier

Proposition 5 : Second membre sous la forme exponentielle-polynôme

Soit $\lambda \in \mathbb{R}$, P une fonction polynôme à coefficients dans K et l'équation différentielle linéaire (E'): $a y'' + b y' + c y = e^{\lambda t} P(t)$.

Alors (E') a au moins une solution particulière de la forme $t \mapsto e^{\lambda t} Q(t)$ où Q est une fonctionpolynôme à coefficients dans K, de degré égal à :

 $1/d^{\circ}Q = d^{\circ}P$, si $a\lambda^{2} + b\lambda + c \neq 0$ (la fonction polynôme Q est unique)

 $2/d^{\circ}Q = d^{\circ}P + 1$, si λ est racine simple de $a\lambda^2 + b\lambda + c = 0$, mais Q n'est pas unique.

 $3/d^{\circ}Q = d^{\circ}P + 2$, si λ est racine double de $a\lambda^2 + b\lambda + c = 0$, mais Q n'est pas unique.

Preuve: $P(t) = p_n t^n + ... + p_1 t + p_0$ avec $d \cdot P = n$, donc $p_n \neq 0$.

On cherche une solution du type $y = e^{\lambda t}(Q(t))$, de sorte qu'on ait : $y'(t) = e^{\lambda t}(Q'(t) + \lambda Q(t))$ et $y''(t) = e^{\lambda t'}(Q''(t) + 2\lambda Q'(t) + \lambda^2 Q(t))$ En reportant dans (E), on obtient après simplification par $e^{\lambda t} \neq 0$, $aQ''(t) + (2a\lambda + b)Q'(t) + (a\lambda^2 + b\lambda + c)Q(t) = P(t)$. Supposons $a\lambda^2 + b\lambda + c \neq 0$: le membre de gauche est de degré n ssi $d^{\bullet}Q = n$ donc $Q(t) = q_n t^n + \ldots + q_1 t + q_0$.

L'égalité précédente équivaut à la suivante : $a\sum_{k=2}^{n}k(k-1)q_{k}t^{k-2}+(2a\lambda+b)\sum_{k=1}^{n}kq_{k}t^{k-1}+(a\lambda^{2}+b\lambda+c)\sum_{k=0}^{n}q_{k}t^{k}=\sum_{k=0}^{n}p_{k}t^{k}$. En posant j=k-2; j=k-1; j=k; j=k, puis en identifiant les coefficients des deux membres, on obtient :

$$\begin{cases} (a\lambda^{2} + b\lambda + c)q_{n} = p_{n} \\ (a\lambda^{2} + b\lambda + c)q_{n-1} + (2\lambda a + b)nq_{n} = p_{n-1} \\ (a\lambda^{2} + b\lambda + c)q_{n-2} + (2\lambda a + b)(n-1)q_{n-1} + a_{n}(n-1)q_{n} = p_{n-2} \\ \dots \\ (a\lambda^{2} + b\lambda + c)q_{0} + (2\lambda a + b)q_{1} + 2aq_{2} = p_{0} \end{cases}$$

Comme $a\lambda^2 + b\lambda + c \neq 0$, la première ligne détermine q_n l'autre q_{n-1} , ... On en déduit qu'il existe un polynôme Q et un seul répondant au problème.

On traitera de façon analogue le cas où λ est racine simple ou double de P.

<u>Exercice</u>: Déterminer les solutions réelles de l'équation différentielle (E_1) : $y'' + y' + y = 2 \cos t$.

Solution: On cherche d'abord une solution particulière de (E_1) . Comme $2\cos t = e^{it} + e^{-it}$; on cherche une telle solution en superposant deux solutions particulières des deux équations $y'' + y' + y = e^{it}$ et $y'' + y' + y = e^{-it}$. D'après la proposition 5, on peut chercher de telles solutions sous les formes $t \longmapsto C e^{it}$ et $t \longmapsto C e^{-it}$; ce qui conduit aux solutions $-i e^{it}$ et $i e^{-it}$. Par superposition, $t \longmapsto -i(e^{it} - e^{-it}) = 2\sin t$ est solution de $y'' + y' + y = 2\cos t$. Comme la solution générale de l'équation est somme de cette solution particulière et de la solution générale déjà obtenue de l'équation homogène, les solutions sont :

$$y(t) = 2sin \ t + exp\left(-\frac{t}{2}\right) \left(\lambda \cos\!\left(\!\frac{\sqrt{3}}{2}\,t\right) + \mu \sin\!\left(\!\frac{\sqrt{3}}{2}\,t\right)\!\right) \quad \text{où λ, $\mu \in IR$.}$$

Voici une représentation de quelques courbes intégrales de l'équation (E_1) . On remarque que, quelles que soient les conditions initiales choisies, leur comportement asymptotique est le même.

