LEÇON N° 9 :Propriétés axiomatiques de \mathbb{N} . Construction de \mathbb{Z} .

Pré-requis:

- Notions d'algèbre (injection, relation d'équivalence, classes, groupes, anneaux, morphismes) ;
- Relation d'ordre total.

I) Axiomatiques définissant N

1) Axiomatiques De Péano

Il existe un ensemble N non vide, et vérifiant les axiomes suivants :

- (i) Il existe une injection $\sigma: \mathbb{N} \to \mathbb{N}$ appelé succession;
- (ii) Il existe un élément de N, noté 0, tel que $0 \notin \sigma(N)$;
- (iii) Tout sous-ensemble E de N contenant 0 et stable par σ est égal à N.

Rem : Ces ensembles s'avèrent être tous isomorphe à $\mathbb N$ que l'on appelle ensemble des entiers naturels

Oral :Le successeur de 0, $\sigma(0)$, est noté 1. Le successeur $\sigma(1)$ de 1 est noté 2, etc.

2) Théorème de récurrence

Oral : du 3eme axiome de Péano souvent nommé axiome de récurrence, on tire le théorème suivant

Théorème: Soit P(n) une proposition dépendant d'un entier naturel n. Si P(0) est vraie et si pour tout $n \in \mathbb{N}$, on a P(n) \Rightarrow P(σ (n)), alors P(n) est vraie pour tout $n \in \mathbb{N}$.

3) Construction de l'addition

Théorème : Il existe une unique application : $\varphi : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ telle que

a. pour tout entier p, $\varphi(p,0) = p$

b. pour tous entiers p, q, $\varphi(p, \sigma(q)) = \sigma(\varphi(p, q))$.

On convient de noter $\varphi(p,q) = p + q$ et d'appeler cette application l'addition des entiers

Proposition: L'addition des entiers possède les propriétés suivantes (pour tous p, q, $r \in \mathbb{N}$):

```
1. p + 0 = p \text{ et } \sigma (p) = p + 1;
```

- 2. (p + q) + r = p + (q + r): l'addition est associative;
- 3. p + q = q + p: l'addition est *commutative*;
- 4. $p + r = q + r \Rightarrow p = q$: l'addition est régulière;
- 5. $p + q = 0 \Leftrightarrow p = q = 0$.

4) Construction de la multiplication

Théorème : Il existe une unique application $\pi: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ telle que :

- a. Pour tout entier p, $\pi(p, 0) = 0$ (0 est dit élément absorbant);
- b. Pour tous entiers p, q, $\pi(\mathfrak{D}, \sigma(q)) = \pi(p, q) + p$.

Nous convenons alors de noter π (p, q) = p × q (ou encore p · q ou simplement pq), et d'appeler π la *multiplication* des entiers naturels.

Proposition : La multiplication des entiers possède les propriétés suivantes (pour tous p, q, r $\in \mathbb{N}$) :

- 1. $p \times 0 = 0$ et $p \times 1 = p$;
- 2. $p \times q = 0$, p = 0 ou q = 0;
- 3. $p \times (q + r) = p \times q + p \times r$: la multiplication est distributive par rapport à l'addition;
- 4. p x q = q x p: la multiplication est *commutative*;
- 5. (p x q) x r = p x (q x r): la multiplication est associative;
- $6.\forall r \in \mathbb{N} \setminus \{0\}$, p x r = q x r \Longrightarrow p = q : la multiplication est régulière.

5) Relation d'ordre sur N

Définition : on définit la relation ≤ par l'équivalence suivante

$$\forall p,q \in \mathbb{N}$$
 , $q \leq p \iff \exists r \in \mathbb{N}$, $p = q + r$

Théorème : La relation \leq est une relation d'ordre et (\mathbb{N}, \leq) est un ensemble totalement ordonné.

Propriété : (i) Toute partie non vide de N admet un plus petit élément.

- (ii) N n'est pas majoré.
- (iii) toute partie non vide majorée de N possède un plus grand élément.

Oral : ces trois propriétés sont en fait les 3 axiomes de l'axiomatique ordinale qui peut également servir à la définition axiomatique de \mathbb{N}

Démonstration:

Par la relation d'ordre, on peut définir pour tous p, $q \in \mathbb{N}$ $p < q \iff p+1 \le q$

(i) Pour toute partie E de N non vide, on note M l'ensemble des minorants de E. M est non vide puisqu'il contient nécessairement 0. De plus il existe p∈ M tel que p+1∉ M (sinon le 3eme axiome de Péano entrainerait que M = N et donc E = Ø). Supposons que p ∉ E, dans ce cas pour tout n∈ E l'inégalité p<n implique p+1≤n et p+1 est un minorant de E, ce qui est absurde. D'où p∈ E et on en déduit que p est le plus petit élément de E.</p>

Propriété : \mathbb{N} est archimédien c'est à dire $\forall a, b \in \mathbb{N}$ $b \leq a, \exists n \in \mathbb{N}, a \leq b \times n$

II) Construction de \mathbb{Z}

Oral : Nous venons de voir la "construction" de $\mathbb N$ et de ses lois. Par contre, étant donnés $p,q\in\mathbb N$, la question de savoir s'il existe un entier naturel r tel que p=q+r ne trouve de solution que lorsque p>q. Nous allons donc construire un ensemble contenant $\mathbb N$ tel que l'équation p=q+r trouve toujours une solution.

1) Construction

On note $N \times N$ l'ensemble des couples d'entiers naturels. Dans cet ensemble de couples, on a trivialement que $(a, b) = (a', b') \Leftrightarrow a = a'$ et b = b'.

Définition: On définit alors la relation R entre couple d'entiers par $(a, b) R (a', b') \Leftrightarrow a + b' = a' + b$.

Théorème: La relation R est une relation d'équivalence et l'ensemble des classes d'équivalence de $\mathbb{N} \times \mathbb{N}$ pour la relation d'équivalence R forme un ensemble noté \mathbb{Z} et appelé ensemble des entiers relatifs. On peut donc écrire que :

$$\mathbb{Z} = (\mathbb{N} \times \mathbb{N})/R = {\overline{(a,b)}, a,b \in \mathbb{N}}.$$

2) Addition dans \mathbb{Z}

Soient x, y $\in \mathbb{Z}$. Choisissons (p, q), (p', q') deux représentants de x et (r, s), (r', s') deux représentants de y. On remarque que (p + r, q + s) R (p' + r', q' + s'), ce qui implique que (p + r, q + s) et (p' + r', q' + s') déterminent la même classe dans \mathbb{Z} . On peut donc définir l'opération notée provisoirement \oplus :

 $\forall a, a', b, b' \in \mathbb{N}, \overline{(a,b)} \oplus \overline{(a',b')} = \overline{(a+a',b+b')}.$

Théorème : (\mathbb{Z}, \oplus) est un groupe commutatif

Remarque : On note $\overline{(a,b)} \in \mathbb{Z}$ l'opposé de l'élément $\overline{(a,b)} \in \mathbb{Z}$ de sorte que $\overline{(a,b)} = \overline{(b,a)}$

Oral: L'application f est un plongement \mathbb{N} de dans \mathbb{Z} qui permet d'identifier \mathbb{N} et $f(\mathbb{N})$ en écrivant $a = \overline{(a,0)}$ pour tout $a \in \mathbb{N}$. Avec cette identification, l'ensemble \mathbb{N} devient une partie de \mathbb{Z} . L'opposé de $a \in \mathbb{N}$ dans \mathbb{Z} est $\overline{(0,a)} = -\overline{(a,0)}$, ce que l'on écrit -a. De plus, la démonstration précédente nous informe que f généralise l'addition dans \mathbb{N} , nous permettant désormais d'écrire + à la place de \oplus .

Théorème : Soit – $\mathbb N$ la partie de $\mathbb Z$ formée des opposés des éléments de $\mathbb N$. Alors

- 1. $\mathbb{Z} = \mathbb{N} \cup (-\mathbb{N})$;
- 2. $\mathbb{N} \cap (-\mathbb{N}) = \{0\}$;

3. Si $a \ge b$, l'unique entier naturel (noté a - b) solution de l'équation b + x = a coïncide avec la somme a + (-b) de a et de l'opposé (-b) de b.

3) Multiplication dans \mathbb{Z}

Soient $\overline{(a,b)} = \overline{(a,b)}$ et $\overline{(c,d)} = \overline{(c,d)}$. Alors

$$\begin{cases} a + b' = b + a' \\ c + d' = c' + d \end{cases} \Rightarrow \begin{cases} (a + b')c' = (b + a')c' \\ (a + b')d' = (b + a')d' \\ a(c + d') = a(d + c') \\ b(c + d') = b(d + c') \end{cases} \Rightarrow \begin{cases} ac' + b'c' = bc' + a'c' \\ bd' + a'd' = ad' + b'd' \\ ac + ad' = ad + ac' \\ bd + bc' = bc + bd' \end{cases}$$

En additionnant membre à membre, les égalités du dernier système, on trouve :

$$(ac + bd) + (b'c' + a'd') = (bc + ad) + (a'c' + b'd'),$$

c'est-à-dire (ac + bd, bc + ad) = (ac' + bd', bc' + ad'), égalité qui nous permet de poser la définition suivante :

$$\forall \ \overline{(a,b)}, \overline{(c,d)} \in \mathbb{Z}, \overline{(a,b)} \times \overline{(c,d)} = (\overline{ac + bd}, \overline{bc + ad}).$$

Théorème: Cette multiplication est commutative, associative et distributive par rapport à l'addition. L'élément $\overline{(1,0)}$ est l'élément neutre pour cette multiplication. De plus, cette opération généralise la multiplication dans \mathbb{N} puisque tous $a, b \in \mathbb{N}$, on $a : f(a) \times f(b) = \overline{(a,0)} \times \overline{(b,0)} = \overline{(ab,0)} = f(ab)$.